Pruned Pareto-optimal sets for the system redundancy allocation problem based on multiple prioritized objectives
نویسندگان
چکیده
Multi-objective problems are often solved by modifying them into equivalent single objective problems using pre-defined weights or utility functions. Then, a multi-objective problem is solved similar to a single objective problem returning a single solution. These methods can be problematic because assigning appropriate numerical values (i.e., weights) to an objective function can be challenging for many practitioners. On the other hand, methods such as genetic algorithms and tabu search often yield numerous non-dominated Pareto optimal solutions, which makes the selection of one single best solution very difficult. In this paper, a new methodology is presented to solve different versions of multi-objective system redundancy allocation problems. A tabu search meta-heuristic approach is used to initially find the entire Pareto-optimal front, and then a Monte-Carlo simulation provides a decision maker with a pruned and prioritized set of Pareto-optimal solutions based user-defined objective function preferences. The purpose of this study is to create a bridge between Pareto optimality and single solution approaches.
منابع مشابه
Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...
متن کاملRedundancy allocation problem for k-out-of-n systems with a choice of redundancy strategies
To increase the reliability of a specific system, using redundant components is a common method which is called redundancy allocation problem (RAP). Some of the RAP studies have focused on k-out-of-n systems. However, all of these studies assumed predetermined active or standby strategies for each subsystem. In this paper, for the first time, we propose a k-out-of-<em...
متن کاملDeveloping a bi-objective optimization model for solving the availability allocation problem in repairable series–parallel systems by NSGA II
Bi-objective optimization of the availability allocation problem in a series–parallel system with repairable components is aimed in this paper. The two objectives of the problem are the availability of the system and the total cost of the system. Regarding the previous studies in series–parallel systems, the main contribution of this study is to expand the redundancy allocation problems to syst...
متن کاملUsing NSGA II Algorithm for a Three Objectives Redundancy Allocation Problem with k-out-of-n Sub-Systems
in the new production systems, finding a way to improving the product and system reliability in design is a very important. The reliability of the products and systems may improve using different methods. One of this methods is redundancy allocation problem. In this problem by adding redundant component to sub-systems under some constraints, the reliability improved. In this paper we worked on ...
متن کاملSolving Redundancy Allocation Problem with Repairable Components Using Genetic Algorithm and Simulation Method
Reliability optimization problem has a wide application in engineering area. One of the most important problems in reliability is redundancy allocation problem (RAP). In this research, we worked on a RAP with repairable components and k-out-of-n sub-systems structure. The objective function was to maximize system reliability under cost and weight constraints. The aim was determining optimal com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Heuristics
دوره 14 شماره
صفحات -
تاریخ انتشار 2008